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Abstract— Performance of peer-to-peer resource sharing net-
works depends upon the level of cooperation of the participants.
To date, cash-based systems have seemed too complex, while
lighter-weight credit mechanisms have not provided strong in-
centives.

We propose exchange-based mechanisms for providing incen-
tives for cooperation in peer-to-peer file sharing networks. Peers
give higher service priority to requests from peers that can
provide a simultaneous and symmetric service in return. We
generalize this approach to�-way exchanges among rings of
peers and present a search algorithm for locating such rings.
We have used simulation to analyze the effect of exchanges on
performance. Our results show that exchange-based mechanisms
can provide strong incentives for sharing, offering significant
improvements in service times for sharing users compared to
free-riders, without the problems and complexity of cash- or
credit-based systems.

I. INTRODUCTION

Peer-to-peer systems provide a powerful infrastructure for
large-scale distributed computing applications, mainly because
of the wide-spread cooperative resource sharing among par-
ticipants. Cooperation and the existence of a critical mass
of participants with sufficient resources are key elements for
enabling a variety of novel applications such as file sharing,
large-scale content distribution, and distributed data process-
ing. Performance in such systems depends on the level of
cooperation by the system’s participants. While most existing
peer-to-peer architectures have assumed that participants are
generally cooperative, there is growing evidence from widely
deployed systems suggesting the opposite. For instance, one
study of the Gnutella file sharing system shows that almost
70% of the peers only consume resources and do not share
any files with the network[1]. The result of this kind of non-
cooperation can vary between tolerable service degradation
and complete system collapse depending on design goals and
performance requirements.

Such problems have recently motivated work on incentive
mechanisms for peer-to-peer systems that stimulate cooper-
ation between self-interested participants. Systems such as
KaZaA[2] attempted some rather naive methods where each
peer announces its “participation level”, computed locally
as a function of uptime, download and upload volume, and
give priority to remote peers that claim high participation

This work was partially supported by the DoD University Research Ini-
tiative (URI) program administered by the Office of Naval Research under
Grant N00014-01-1-0795.

levels. However, this is easily subverted since peers can claim
anything with a simple modification to their software. In
fact, such hacks are easily accessible [3] and widely used[4].
Other proposals to date require the use of a credit system
which can be either centralized or decentralized. Centralized
mechanisms[5], [6] (e.g., using micropayments issued by a
trusted server or a centralized transaction clearing center)
inherit the typical disadvantages of centralized designs (such as
indexing) in that they introduce a single point of failure, may
put a significant burden on a single peer and, perhaps most
importantly, it may be hard to design the right incentives for
one or more peers to take up such a demanding and sensitive
role. Recent proposals for decentralized credit mechanisms[7],
[8] are based on distributed hash tables (DHTs) [9], [10], [11]
and therefore inherit another set of problems. For instance,
heterogenous node capabilities make efficient allocation deci-
sions hard, transient peer participation may significantly stress
reconfiguration performance, and there are known classes of
attacks that are likely to be directed against the credit system
service given its importance[12].

As an alternative, we propose a more lightweight approach
that avoids the complexities of credit mechanisms. Rather
than building a system based on principles of monetary or
credit economies, we structure the system as a more primitive
exchangeor barter economy. Users directly trade resources
between themselves, so little or no long-term bookkeeping
is required. Requests from peers that can provide a simul-
taneous, symmetric, service in return (exchange transfers) are
given higher priority. The service need not be directly to the
provider (a pairwise exchange), but more generally priority
is given to peers who participate in � -way exchangesto
which the provider currently belongs. � -way exchanges are
implemented as rings of � peers, where each peer is served
by its predecessor and serves its successor in the ring. Non-
exchange transfers are only served if no other exchange is
possible and peers have spare capacity. The preference given to
exchange transfers provides a strong incentive for participants
to cooperate.

The rest of the paper is organized as follows. In Section II
we describe prior work on incentive mechanisms in peer-to-
peer systems, and discuss the complexities of credit-based
systems and the limited effectiveness of the incentives in
lighter-weight systems. In Section III we present the proposed
exchange mechanisms and discuss several key design issues
with respect to efficiency and security. In Section IV we
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present a simulation study analyzing the exchange mechanisms
and their effect on file sharing system performance. In Sec-
tion V we discuss open issues and directions for extending
the results presented here. We summarize and conclude in
Section VI.

II. RELATED WORK

The first known use of payment-based incentive mecha-
nisms in peer-to-peer file sharing was in the now defunct
MojoNation network[5]. Each user was given an initial en-
dowment called Mojo which he could spend on purchasing
files from other peers. The main limitations of this approach
is that all transactions had to be cleared in a centralized system,
and users were burdened with managing their Mojo.

A distributed cash-based system for peer-to-peer systems is
presented in [7]. The system uses a currency called karma
which is maintained for each user by a collection of random
participants called a bank-setthat is located using a DHT
lookup. Users need to negotiate the price of serving an
object through an auction mechanism, and coordinate with
the bank-set for transferring karma between accounts. Each
user receives an initial amount of karma when signing up
with the system, and the system ensures that the rate at which
users can create new identities is limited through the use of
a cryptographic puzzle. To address inflation or deflation, the
system needs to periodically normalize the total amount of
currency in the system. The result is a fully-fledged economic
system that is in principle more flexible than an exchange
system. In an idealized setting, a cash-based scheme may be
able to offer a stronger performance advantage to contributing
peers, as it is not subject to the “double coincidence of wants”
constraint that drives exchanges. In practice however, the cash-
based approach has two main limitations.

First, it suffers from all the complexities of currency man-
agement. If the mechanisms used to negotiate prices, adjust
accounts to inflation and deflation and manage a user’s budget
are not made completely transparent to the user, then such
a system is likely to have a high cost in terms of user
attention[13] which is suggested as a major reason why
micropayment schemes are unlikely to get wider acceptance in
general[14]. The feasibility of such mechanisms has not been
proven to date.

Second, the need to provide start-up funds to new users
creates a potential loophole in the economy. Specifically, the
cryptographic puzzle used for protecting against the creation
of new user identifiers and transfer of credit to existing active
users may not be sufficient, as it may not be able to offer a
satisfactory trade-off between keeping fake accounts out and
allowing legitimate new users in. In essence, it is possible to
earn cash in return for CPU cycles, without doing any useful
work for the system.

A lightweight, pair-wise credit system is implemented in
the eMule system[15]. The goal of the credit system is to
reward users contributing to the network by reducing their
waiting time in the upload queue. For each request in the
upload queue the peer computes the Queue Rankbased on
a scoring function that depends on the current waiting time

for the request, as well the upload and download volumes for
the peer. The main advantage of this scheme is simplicity:
there is no communication overhead and a peer only needs to
maintain the upload and download volumes for each peer it has
communicated. The approach is cheat-proof in the sense that
peers have no reason to tamper with the credit file. However,
anecdotal evidence[16] suggests that the approach does not
consistently provide a clear performance advantage to users
who contribute resources to the network. Although there is
no clear evidence in terms of measurements to determine
precisely why this is happening, the credit approach appears
to have two main limitations.

First, it is hard for a peer to strategize in terms of what
peers he wants to earn credit from in order to maximize ex-
pected benefits. A large fraction of peers may be disconnected
resulting in delays in rewarding credit; other peers may leave
the system permanently, resulting in loss of credit; others may
not have any object the peer is interested in, and some may
not share content at all. The use of “waiting time” as a factor
in computing queue rank further complicates this problem. It
results in giving weaker performance advantage to users with
established credit, as peers that do not have any credit can still
use the system if they are patient enough. Tuning the scoring
function to reduce the effect of waiting time is possible, but
result in never serving users that don’t have established credit,
even if establishing credit with those peers could be beneficial
in the future.

One practical workaround to address this problem 1 is to
control the set of shared files in a way that increases credit
with peers likely to be useful for a given set of requests in
the near future. For instance, if a peer is requesting an object
in category �, then it makes sense to limit sharing to only
those objects that are already available and belong to category
�. Assuming that remote peers sharing the requested object
are likely to request objects from the same category, the peer
is more likely to earn credit and therefore improve queue
rank and reduce waiting time on those peers. In this scenario,
the credit system essentially approximatesexchanges, at the
cost of additional effort to get the conditions right for this to
happen.

A second problem with the pairwise credit system is that
there is no clear incentive for individual peers to cooperate
in supporting the credit system, although this approach could
in principle lead to a better global operating point. There
is also no strong individual incentive not to honor credit,
but in practice certain variants of the eMule client do not
support the credit system, which also means that a fraction
of the credit earned essentially gets lost. The mechanism does
not directly penalize clients for this type of defection, and
building additional protection (e.g., monitoring compliance
and maintaining blacklists) adds complexity.

In [17] the authors argue that peer-to-peer “bartering”
is an appropriate way to bootstrap peer-to-peer economies,
focusing on systems like PlanetLab[18] where peers share
basic resources like computing, storage and network capacity.

1This has been suggested on message boards as a strategy that has worked
in practice.
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They propose the exchange of signed resource tickets between
system participants that can be stored, traded and used for
allocating resources. Strictly speaking, this is closer in spirit
to credit economies involving personal debt certificates than
barter. This approach is well suited for systems with a small set
of homogeneous resources like CPU, storage and network ca-
pacity. In such systems the exchange mechanisms are unlikely
to be useful, as there is little meaning in instant exchanges
of same-type resources. In contrast, file sharing systems are
content-oriented, providing a high level of specialization in
terms of the objects served by each peer. This fits well with
the instant exchange model.

The work most closely related to ours is Bittorrent, a
system for large-scale content distribution where peers ex-
change blocks of the same file in an effort to expedite the
distribution of large files [19]. The approach is more limited
in that it only supports pairwise exchanges on the same file,
and appears to be vulnerable to freeriding middlemen (we
defer discussion of this flaw and solutions to Section III-
B). No evidence is provided on the actual contribution of
the exchange mechanism, as the system was not used at a
scale comparable to popular file-sharing systems to observe
any substantial diversity in peer behavior. To the best of our
knowledge, our study is the first to investigate the effect of
exchange mechanisms on peer performance and their value as
an incentive mechanism in a file-sharing system.

III. EXCHANGE MECHANISMS

In this paper we consider a file sharing system where each
peer has fixed upload and download capacity. The upload
capacity is more likely to be the resource bottleneck than the
download capacity. To manage the upload link, we respond
to all requests in relatively large, equal, fixed-size, blocks. We
assume that the system supports partial transfers and that peers
can download different parts of the same object concurrently
from multiple sources. To focus on the main point of this
paper, we ignore the details of object lookup. We note that
our approach can work with several known search mechanisms
including broadcast in Gnutella-like networks or a DHT query
in systems like Chord. When a peer is interested in an object it
can use one of these methods to locate up to a certain fraction
of peers that currently have the object.

Each peer has an incoming request queue(IRQ) where
remote peers register their interest for a local file. A transfer
to satisfy a request is initiated if two conditions are met. First,
there must be sufficient capacity at both peers for the transfer.
The local peer must have upload capacity (an open fixed-
size slot on the upload link), and the remote peer must have
sufficient download capacity. Second, either the transfer is an
exchange transfer, or else no other request in the IRQ is both
an exchange transfer and satisfies the first condition.

In practice, the local node does not check the download
capacity of the remote node, but assumes it is sufficient.
Inadequate download capacity terminates the transfer when the
remote node cannot receive its incoming request, it terminates
its outgoing upload, and issues the request again when a
download is feasible.

o1 P1 P2 o2

o2

o1 o3P1

P2

P3

on

o1 on-1
P1

Pn

Pn-1

P2...Pn-2

Fig. 1. Pairwise, 3-way and n-way exchanges

All exchanges are performed one fixed-size block at a time.
Transfers are terminated if one of the two communicating
peers disconnects, if the transfer is completed, or if the source
deletes the object. It is quite common for one side to terminate
first, when it completes its own download, because object
sizes may differ and the system allows partial and concurrent
transfers.

Non-exchange transfers will only be served if no exchange
is possible and the peer has a free upload slot, although these
slots will be reclaimed as soon as another exchange becomes
possible. Peers who share more are more likely to be able
to participate in an exchange, directly rewarding them with
faster transfers. Thus, the power of the proposed approach is
derived from the priority given by the system to exchange over
non-exchange transfers.

A. Exchange transfers

Peers must give priority to exchange transfers. It is therefore
imperative that feasible exchanges be identified.

Pairwise exchanges are easily detected. Each peer A reg-
ularly examines its incoming request queue and determines
if, for any pending request, the remote peer B has some
object that A is interested in that would qualify for a pairwise
exchange. Although pairwise exchanges are simple, unfortu-
nately, requests frequently do not resolve into convenient pairs.

Fortunately, it is easy to compute feasible � -way ex-
changes. Let � be the directed graph whose vertices are nodes
in the peer-to-peer system, and whose labeled edges represent
requests. An edge from node �� to �� with label �� represents
a request from �� to �� for object ��. It is clear that any cycle
of length � in � represents a feasible �-way exchange.

How can we compute cycles in �, a potentially enormous
graph? First, we have empirically determined that �-way
exchanges, where � � �, do not substantially improve the
likelihood of successful exchanges over exchanges where � �
� (see Section IV). Therefore, it is sufficient to limit the search
for cycles to chains of up to 5 predecessors. Second, we note
that a request from � in the incoming request queue of �
represents an edge in � from � to �, and therefore peers
already have information about a partial local subgraph of �.

Each peer maintains a request treeas follows. A peer with
no incoming requests has an empty Request Tree. For peers
with non-empty incoming request queues, let each request in
the IRQ include the contents of its request tree (pruned to a
depth of 5). �’s Request Tree consists of an implicit root, �,
as the parent of the set of Request Trees accompanying each
entry in the IRQ. Then, � can initiate an �-way exchange if
any peer in the Request Tree owns any object currently desired
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by �. If a suitable peer is found, and that peer appears at
depth � in the tree (the depth includes � as the root), then
we can construct a ring of � peers, 	� for � � 
 � �, each
carrying object �� and requesting object ����������. Each peer
provides an object to their predecessor and gets an object from
their successor.
� inspects the Request Tree before transmitting any request

and after receiving each request. Prior to transmission of a
request for object ��, � inspects the entire Request Tree to
see if any peer provides ��. On receipt of each request, �, �
need only inspect the incoming Request Tree associated with
� — but it checks the peers in the Request Tree for anyobject
that � still wants.

Note that at the time � decides to request object �� it
“discovers” a (possibly incomplete) set of peers who provide
object ��, but it actually issues requests to only a subset of
those peers. It can use the original provider list to compute a
cycle containing a peer, ��, even if it did not originally transmit
a request to ��. At the initial request time, � had no preference
for �� because � had no way of knowing that � � was a potential
participant in an �-way exchange.

In practice, � must circulate a token through the proposed
ring to determine whether everyone is still willing to serve.
The ring can be invalid for several reasons. First, in the time
between the original requests and the ring initiation attempt,
some peers may have gone offline, or crashed. Second, other
peers may have already constructed rings of their own, in-
cluding some of �’s intended participants (it is possible that
several peers along the intended cycle will attempt to create
the same ring roughly simultaneously).

An interesting question is how to prioritize different feasible
exchanges that can satisfy a given request. In principle, a
preference for larger rings should have a positive effect on
overall performance, as more peers are served. On the other
hand, peers would prefer smaller rings as the search cost is
lower, and the expected exchange volume is also more likely
to be higher for smaller rings, as the probability of a peer
either disconnecting or completing is higher for larger rings.
Assuming peers care less about global performance and more
about their own benefit, there is no clear incentive to put
additional effort into looking for larger rings when even a
pairwise exchange has been located that has equal (or higher)
expected utility.

B. Preventing cheating

Since the system gives priority to exchange transfers, mali-
cious peers may attempt to cheat. For example, a peer could
claim that there is an an exchangeable object available and
serve junk in exchange for real data.

Several mechanisms can be used to address this problem.
Peers can locally blacklist cheating peers and refuse to serve
them later. In a large and dynamic system this is likely to
be ineffective as cheaters may perform well enough even if
they can cheat each peer only once. Cooperative blacklisting
could help tackle this problem, although it requires additional
mechanisms which may themselves be subject to attacks. In
both cases, the problem persists if it is easy for a peer to
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Fig. 2. � can be served by some object on P9. The entire request tree
is shown in (a). The cycle for the 3-way exchange that � tries to initiate
is shown in (b). P3 may have simultaneously discovered a cycle through a
target of P2 other than �. Both rings need P2, so only one will be initiated
successfully.

assume a new identity that is not blacklisted, as is the case in
most file sharing systems today[20].

It is possible to limit the damage done by cheating by
exchanging blocks synchronously and validating each received
block before transferring the next one. This requires a trust-
worthy source of information for the actual valid checksums of
the blocks being probed. The maximum benefit for a cheater
in this case would be equal to the block size. If the block
size is ����	�
� bytes and the round-trip time between the
two peers is ���� seconds, this limits the maximum exchange
rate to ����	�
������ bytes/second. As this may be less than
the slot capacity, peers may want to use a window protocol
and increase the window size to fill up the slot capacity-
delay product, at the expense of increasing risk. A reasonable
approach would be to start the exchange with a small window
and increase after a number of rounds. A cheater would need
to have at least a few real blocks in order to increase the
window. It is very likely that even this level of cooperation
would have a positive effect on the system as a whole.

Another problem is that a peer could act as a middleman
between two peers that could perform an exchange directly
with each other, and obtain an object without doing any useful
work for the system. Specifically, lets assume that peer � has
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object � and wants object �, and peer � has object � and wants
object �. The cheating peer �, interested in object � claims
that he has object � and wants object � when talking to �, and
that he has object � and wants object � when talking to �.
Peer � would start getting blocks of � from � and exchanging
them for blocks of � with � which in turn are passed to � for
more blocks of �. In this scenario, peer � does not contribute
any useful work to the system, and can still get high-priority
service. If this is allowed to happen, then the exchange-based
incentives break down.

Tighter control is needed to address this problem, involving
the use of a trusted peer as a mediator. Both directions of the
transfer can be encrypted, each with a secret key only known
to the sending peer and the mediator. In the control header of
each transfer block, the sending peer also includes a peer-of-
origin identifier. The control header is also encrypted, so that a
middleman cannot modify it. When the transfer is completed,
the trusted peer mediates the exchange of the secret keys, after
ensuring that neither side of the exchange has cheated. The
mediator can do this by verifying the validity of a certain
small number of randomly chosen blocks from each side of the
transfer. The keys are sent to the peers indicated in the control
header of the test blocks. In this way, a middleman would not
be able to decrypt the blocks he peddled between the two peers
in the scenario discussed above, and his participation in the
transfer would offer him no benefit.

One remaining issue with this approach is that the mid-
dleman can initially obtain two blocks, one for each object
peers � and � are interested in, and carry out small, one
block transfers with each peer, and then presenting the newly
acquired block for an exchange with the other peer. Since
he starts this process with real data that is not encrypted,
the protection offered by the mediator is not sufficient in
this case. Although we do not have a similar solution for
this problem, we argue that this way of increasing one’s
performance without doing useful work is unlikely to be
possible at a large enough scale to be practical for cheaters
as a general strategy, and a threat to the exchange-based
system. First, the cheating peer needs to wait in low-priority
queues to get the ’bait’ blocks anyway, for both files, adding
some latency to the process. Second, the number of potential
“victim” peers decreases with the number of blocks the cheater
has available. Third, since the cheater needs to have two
blocks, one for each peer, he is also constrained by the number
of peer-pairs interested in those blocks. Fourth, the cheater is
wasting his resources because he is using part of his upload
capacity for an object that is totally useless to him. unless of
course he is interested in both objects. if not, he may be better
off using this capacity for real exchanges. Fifth, the peers he
is targeting are likely to be talking to each other already so
they may be uninterested in what he has to offer, and they
may have already committed all of their upload capacity to
each other. Finally, additional constraints can be designed into
the system to discourage this behavior, such as giving higher
priority to longer exchanges.

Since users are considered to be self-interestedrather than
malicious, the best way to discourage this behavior is to offer
an alternative that gives them better performance at a lower

peer upload has wants
A 10 - x
B 5 x y
C 10 y x
D 10 y x

TABLE I

EXAMPLE MIDDLEMAN SCENARIO RESULTING IN NON-RING EXCHANGE

x

y

B A

C

yD

5

5

5

5

5

Fig. 3. Example of non-ring exchange

cost, is useful for the system as a whole, and respects their
desire not to store or share objects. For instance, consider the
scenario of Table I.

Although peer � has no exchangeable object, it is possible
to substitute a pure object exchange with a mixed object-
capacity exchange as shown in Figure 3: peer � sends � to
� (5 upload units), peer � forwards � to � and � (5 upload
units each for a total of 10), and � and � send � to � (5
upload units each for a total of 10). In this scenario, the result
is the same for � and � compared to a pure object exchange,
but both � and � increase their utility, since � gets object
� at a rate of 10 when he would normally only be able to
get it at a rate of 5, and peer � gets object � at a rate of
5 when he would not be able to participate at all in a pure
object exchange. Of course, this requires a generalization of
the exchange mechanism to non-ring topologies, which we do
not discuss or analyze further in this paper.

IV. SIMULATION

A. Environment

We simulate a small, 200-node file-sharing system where
each peer has fixed and asymmetric upload and download
capacity e.g. the available capacity is not affected by other user
traffic and there is typically much more download than upload
capacity. We assume that the core network is sufficiently
overprovisioned, delay and loss are negligible so that the only
bottleneck in the system is a peer’s connection.

The object popularity model is similar to the model pre-
sented in [21]. Objects are organized in categories. Each peer is
interested in � categories, which are selected at initialization
time. The popularity of a category of rank 
 is computed as
� �
� � ���� � 
���� i.e. the probability of a request for an

object in category 
 is ��� � � �
��
��

�� �

� For each of the

� categories assigned to each peer we also assign a local
preference distribution with uniformly random weights for
each category. The local preference distribution is independent
from global popularity. When a peer issues a request, it
chooses a category based on the local preference distribution,
and then picks an object in that category, also based on a
distribution where the popularity of an object of rank 
 is
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number of peers 200
download capacity 800 kbit/s
upload capacity 80 kbit/s
ul/dl slot size 10 kbit/s
content categories 300
objects per category uniform(1,300)
categories/peer uniform(1,8)
category popularity f=0.2
object popularity f=0.2
object size 20 MB (all objects)
storage capacity per peer uniform(5,40)
(nr. of objects)
queue for incoming requests 1000
max pending objects 6
fraction of freeloaders in system 50%

TABLE II

BASIC SIMULATION PARAMETERS

computed as � �
� � �����
���� and the probability of a request

for an object in category 
 is ��� � � �
��
��

�� �

� . For � � �

the distribution becomes uniform, and for � � � it becomes
zipf-like. Note that measurements of real-world file-sharing
systems suggest zipf-like locality[22].

Each peer has up to a maximum number of pending
requests. Requests are generated fast enough so that each peer
reaches this maximum early enough in the simulation, and
throughout an experiment a new request is issued as soon
as a pending download is completed. As the factor � of the
object popularity distribution increases, peers are increasingly
likely to request an object already available locally. In reality,
peers are unlikely to request objects they already have and
the effect of such “cache hits” on our measurements could
be misleading. To avoid such effects we therefore choose to
ignore hits and continue to generate candidate requests until
a miss is found. This may shift the distribution of requests
more towards uniform, but the resulting bias is more on the
conservative side.

Each peer can store up to a maximum number of objects.
We initially place objects on each peer based on the peer’s
category preferences. In regular intervals, peers examine their
storage and remove random objects if the maximum number
of objects is exceeded. A peer postpones removing an object
if it is used in an ongoing exchange.

The system parameters for simulation are shown in Table II.

B. Results

The key metric for peer performance in file sharing systems
is object download time. We therefore obtain the mean object
download time for sharing and non-sharing users in a non-
exchange, pairwise, 5-2-way (e.g. choosing longer over shorter
exchange rings), and 2-5-way (e.g. choosing shorter over
longer rings) exchange system. We first look at behavior as
load in the system increases. The results are shown in Figure 4.
As expected, as the upload capacity is reduced, the mean
download time increases for both sharing and non-sharing
users, but increases faster for non-sharing compared to sharing
users. This happens because as the system gets more loaded,
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Fig. 4. Mean download time vs. upload capacity

resources are shifted to sharing users because we prioritize
exchanges over non-exchanges and so a larger fraction of the
upload resources can be given to users that can participate in
exchanges. For 40 kbit/s upload capacity the use of pairwise
exchanges results in download times for sharing users that are
less than half of the download times for non-sharing users.
The use of higher-order exchanges in addition to pairwise
(denoted as 2-5-way and 5-2-way in the graph) gives sharing
users four times better performance than non-sharing users.
When using the exchange mechanism the improvement for
sharing users is also significant compared to a system where
no exchange mechanisms are introduced (“no exchange” in the
graph): downloads are roughly twice as fast when exchanges
are used. This observation suggests that sharing peers have a
good incentive to deploy the proposed exchange mechanism.

In Figure 5 we present the fraction of exchange requests
in the system as load increases. We see that the fraction of
exchange requests increases almost linearly with load; as the
object popularity model does not change, the difference is
because as load increases a larger fraction of the transfer slots
on each peer are given to exchange transfers. We also see that
pairwise only performs slightly worse than 5-2-way and 2-5-
way. If peers aggressively seek out feasible longer exchange
rings before resorting to shorter rings, the system performs
slightly better than if peers only look for longer rings when
no shorter rings are feasible.

The benefit of seeking and using higher-order exchange
rings is shown in Figure 6. We observe that there is a
significant difference between � � � and � � �, suggesting
that higher-order exchanges are indeed valuable. However,
much larger rings (� � �) do not offer any substantial
improvement.

In Figure 7 we present the distribution of the amount of
data transfered per session. We see that exchanges have a
higher transfer volume, as normal transfer sessions tend to
be canceled and replaced by exchanges. We also observe that
the transfer volume is much higher for shorter rings than for
longer, as there is a higher probability of a peer completing
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a transfer and therefore dropping the exchange when there
are many peers compared to when there are only two peers.
This helps explain why higher-order exchanges contribute less
than pairwise exchanges to the overall improvement. Note that
in the current simulation model peers always pick the first
feasible exchange in the search process. There may be other
feasible exchanges with a longer expected life-cycle. Thus, the
system could be modified for determining the best possible
exchange, at the expense of increased search time and cost.

In Figure 8 we present the distribution of the waiting
times for different classes of transfers. The waiting time for
a session is the difference in time between the original object
request and the start of a transfer. We see that waiting times
for non-exchange transfers are substantially worse than for
exchange transfers, as the system gives absolute priority to
exchanges. This difference is the key reason why exchanges
provide significantly better performance to sharing users. The
waiting time is only slightly worse for higher-order exchanges
compared to pairwise exchanges, meaning that this is not
the cause for the relatively smaller benefit of higher-order

exchanges.

We also determined the effect of the object popularity
distribution on performance. In Figure 9 we show the mean
download time for different types of exchange configurations
as a function of the object and category popularity factor � .
As expected, the difference in performance between sharing
and non-sharing users increases as the factor � approaches
1, resembling a zipf-like distribution, although the relative
benefit is significant even when object popularity is more
evenly distributed. In this experiment, the difference between
5-2-way and 2-5-way exchanges becomes more clear, and
it seems that 2-5-way perform slightly better, not because
they improve the performance of sharing users but because
they reduce performance of non-sharing users. This happens
because exchange transfers displace non-exchange transfers
and 2-5-way are longer-lived on average than 5-2-way, even
if they have similar aggregate transfer volumes, as shown in
Figure 10. Because they have similar transfer volumes they do
not affect the performance of sharing users as much, but, as
they are more long-lived, they tend to displace non-exchange
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transfers for a longer time. These results indicate that giving
preference to pairwise over higher-order exchanges is a good
engineering choice, in addition to being cheaper in terms of
search cost.

In Figure 11 we present the ratio of mean download times
between sharing and non-sharing users as a function of the
maximum number of outstanding requests on each peer as well
as the number of categories each peer is interested in. The
maximum number of outstanding requests increases system
load, but also increases the number of feasible exchanges in the
system. Up to a certain point this results in a better download
time ratio for sharing users, as the fraction of the total system
capacity devoted to exchanges tends to increase. The improve-
ment levels off and even decreases as the maximum number
of outstanding requests increases. This can be explained by
the increased competition between sharing users, that seems
to reduce their relative benefit, although the reduction does not
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appear to be significant.
We must note that since we do not explicitly model idle

peers that have no outstanding requests, this also provides an
indirect measure of the effect of idle users on system perfor-
mance. Idle users do not participate in exchanges and therefore
do not discriminate between sharing and non-sharing peers,
dampening the effect of exchanges on relative performance.

The effect of the number of categories per peer is also
significant, as it generally increases the probability of locating
a feasible exchange. If the number of maximum outstanding
requests is small, the effect appears to be reversed, with more
categories per peer giving a slightly smaller relative benefit to
sharing peers.

All of the previous simulations assumed a fixed fraction
(50%) of peers were good citizens and shared. Figure 12
investigates the effect of frequency of uncooperative behavior
on mean download times, to see whether incentives to share
continue even if the vast majority of peers do not cooperate (or,

8



contrarily, if almost everyone cooperates). The measurements
show that the gap in mean download times persists, regardless
of the fraction of non-sharing nodes. The explanation for
this is straightforward. We use the “no-exchange” case as
a baseline, i.e. mean download time in a system in which
every transfer is granted and no preference is given to sharers.
When almost everyone is sharing, then sharers get the same
performance as no-exchange (sharers rarely get an advantage
from sharing), however, the non-sharers get a large penalty.
On the other hand, when almost everyone is non-sharing, they
rarely compete with a sharer, so the non-sharers receive the
same performance as “no-exchange”. However, the infrequent
sharer gets a big reward, because they are almost always able
to preempt other transfers and get immediate service.

V. DISCUSSION

For the purpose of this study we have focused on a
rather simplistic simulation scenario, and a specific file-sharing
model. We discuss some of the limitations of our analysis and
how the mechanisms proposed could be improved further.

In terms of simulation, the basic assumptions (e.g. overpro-
visioned core network, asymmetric bandwidth, zipf-like pop-
ularity) seem to agree with real-world measurements. Many
of the other characteristics of the current model tend to err on
the conservative side. Firstly, we assume that a peer cannot
serve an object unless it has been fully received. In reality,
many peer-to-peer systems (for example, eMule[15]) do serve
“chunks” of incomplete objects. If this is incorporated in the
model, the opportunity for exchanges is likely to increase
further. In fact, this form of exchange is implemented in the
Bittorrent system[19].

Secondly, we have assumed that transfer slots are fixed,
regardless of the type of transfer. This means that exchanges
cannot use more capacity than the standard transfer slot,
although peers would clearly have interest in doing so. We
also assume that a peer can only have one registered request
on a given peer for a given object. Thus, if multiple exchanges
are possible, whether pairwise or with different values of � ,
only one can be chosen.

Thirdly, in our simulation all peers have very similar char-
acteristics, ignoring the widespread heterogeneity observed
in real-world systems. For example, the existence of “super-
peers” (e.g., peers with substantially better network capacity
or storage) is likely to have a positive effect on exchange
mechanisms, especially as a way to stimulate the deployment
of exchange-capable clients.

Finally, we have ignored the complexity issues of commu-
nicating request tree information. The cost of communicating
the full request tree may be prohibitive for peers with a large
number of incoming requests and peers close to them in the
request graph. If the request tree is updated incrementally, this
is likely to introduce some latency in the search process which
is not reflected in the waiting times of exchange transfers in the
current simulation model. However, there are ways of reducing
this cost. In particular, we can use a set of Bloom filters[23] to

represent the set of peers in the request tree2, and ignore the
detailed structure of the request tree and the objects associated
with each edge. This is likely to offer significant savings
especially considering the size of object and file identifiers
in modern file sharing systems and the likelihood of the same
peers. The main difference in the process of setting up an
exchange is that the initiator does not have access to the
full subgraph, and can only determine that a cycle exists, but
cannot identify all the members of the exchange. The initiator
must depend on next-hop lookups at each node instead of
source-routing the request token around the ring, and there is
a non-zero chance of false positives due to the probabilistic
nature of Bloom filters. The space savings of this scheme
are likely to be important for peers with a large number of
incoming requests, and the peers close to them in the request
graph. The details of this scheme (e.g. how to adapt, how
to use hybrids consisting of both Bloom filters and complete
request trees, how to protect against cheating, etc.) are subject
to future work.

It is hard to speculate on how the incentives provided by
exchanges would affect peer behavior. One direction for future
work is therefore to determine how the proposed exchange
mechanisms interact with replication mechanisms. In the cur-
rent model, peers only store objects they are directly interested
in. In an exchange system, users have an incentive to replicate
popular objects that are in demand, as this is likely to increase
their chances of participating in exchanges which, being
prioritized, would give them a performance improvement. In
essence, popular objects take the role of currency in exchange
economies as they are easily exchangeable for other goods. 3

There are three main limitations in the exchange approach
as presented in this paper. First, peers are assumed to be
equally interested in all of their requests. It would be useful to
investigate non-uniform utility models, as many existing file-
sharing systems already allow users to express their preference
in terms of “low”, “medium” or “high” priority. This kind of
information could be used to negotiate asymmetric exchanges,
based on some form of bargaining or auction.

Second, peers can leverage their ability to participate in
exchanges only when they have pending requests themselves.
It would be desirable to provide a stronger incentive for users
to actually stay connected even if they cannot immediately
participate in some exchange.

Finally, we have only considered peers for which down-
loading increases utility and uploading either does not affect
or reduces utility. The incentive structure is different in peer-
to-peer content distribution systems: peers increase utility by
pushing content out, and cooperating peers could help by
downloading and re-distributing content on behalf of others.
It would be interesting to see how exchange mechanisms can

2We require a different Bloom filter for each level in the request tree so
that peers can trim the request tree by one level when they initiate a new
request. Further, we need a distinct set of Bloom filters for each entry at the
top level of the incoming request queue, so that a peer can reconstruct the
next hop in the exchange ring when a ring initiation token comes down.

3We do not expect users to manually replicate objects or to patch their
file-sharing software for that purpose. Rather, it is likely that developers of
file-sharing clients will seize the opportunity to build software that is expected
to perform better.
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be adapted for this purpose, and in what form.

VI. SUMMARY AND CONCLUDING REMARKS

We have presented an exchange-based approach for pro-
viding incentives for cooperation in peer-to-peer file-sharing
networks. Our approach is decentralized, and is considerably
simpler than systems that provide system-wide forms of credit
or cash. The basic idea is that peers give higher service priority
to requests from a set of peers that can (transitively) provide
a simultaneous, symmetric service in return. We describe
methods for discovering sets of feasible �-way exchanges, and
the methods for regulating transfers to provide incentives to
share resources. We have also discussed how to guard these
mechanisms against attacks by users wishing to exploit them
to increase their own performance.

We have used simulation to analyze the mechanisms and
determine their effect on performance. Our results show that
exchange mechanisms offer a significant performance advan-
tage to cooperating users, in terms of object download times.
The performance advantage is more pronounced when the
system gets more loaded, and when object popularity leans
more towards a zipf-like distribution. Our results also show
that higher-order exchanges offer a noticeable improvement
(with improvements significantly diminishing with � � �, if
used together with pairwise exchanges. Thus, the proposed ap-
proach provides a strong incentive for users to share resources.
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